Convexity of integral transforms and duality
نویسندگان
چکیده
منابع مشابه
Convexity, Duality and Effects
This paper describes some basic relationships between mathematical structures that are relevant in quantum logic and probability, namely convex sets, effect algebras, and a new class of functors that we call ‘convex functors’; they include what are usually called probability distribution functors. These relationships take the form of three adjunctions. Two of these three are ‘dual’ adjunctions ...
متن کاملexistence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولGeneralized Convexity and Integral Inequalities
In this paper, we consider a very useful and significant class of convex sets and convex functions that is relative convex sets and relative convex functions which was introduced and studied by Noor [20]. Several new inequalities of Hermite-Hadamard type for relative convex functions are established using different approaches. We also introduce relative h-convex functions and is shown that rela...
متن کاملConvexity and Duality in Hamilton-Jacobi Theory
Value functions propagated from initial or terminal costs and constraints by way of a differential inclusion, or more broadly through a Lagrangian that may take on∞, are studied in the case where convexity persists in the state argument. Such value functions, themselves taking on ∞, are shown to satisfy a subgradient form of the Hamilton-Jacobi equation which strongly supports properties of loc...
متن کاملSDCA without Duality, Regularization, and Individual Convexity
Stochastic Dual Coordinate Ascent is a popular method for solving regularized loss minimization for the case of convex losses. We describe variants of SDCA that do not require explicit regularization and do not rely on duality. We prove linear convergence rates even if individual loss functions are non-convex, as long as the expected loss is strongly convex.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Complex Variables and Elliptic Equations
سال: 2013
ISSN: 1747-6933,1747-6941
DOI: 10.1080/17476933.2012.693483